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Abstract-- Two explicit representations are obtained for the Kronecker powers of orthogonal
second-order tensors. The derivations rely on the mathematical properties of Kronecker products
and on classical parametrizations of orthogonal tensors. These representations are subsequently
employed in the systematic construction of structural tensors and in the analysis of corotational
rates of tensor functions. 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTIO]\i

Consider a k-th order tensor T in the three-dimensional Euclidean space E\ having I;'hh
and f"/,I\ as its components with reference to fixed orthonormal bases {e/} and Ie;},
respectively. Let the bases vectors in the two systems be related by the orthogonal trans
formation el = QI,e/, where Quare the components of an orthogonal tensor Q. Then, the
components of T are related according to

T,:\i.: .. ,ik = Qi!.fIQi-:J1· .. Qil.),1, Ti1/2 . h- (I)

The quantities Qi,j, Qi,i, ... Qiklkare components of the k-th Kronecker power of the orthog
onal tensor Q, denoted here as Q/,. Recalling that the space of k-th order tensors may be
regarded as a 3k-dimensional Euclidean vector space, it follows that Ok may be interpreted
as a linear transformation on this vector space. In fact, it is established later in the article
that this is an orthogonal transformation. Given that second-order orthogonal tensors
admit various representations, a question arises as to whether analogous representations
can be obtained for A polynomial expansion of Ok for the special case k 2 has been
derived by Podio-Guidugli and Virga (1987), while Mehrabadi et al. (1995) have also
deduced an associated exponential representation by exploiting the properties of fourth
order tensors. The main purpose oCthis article is to providc completely general exponential,
as well as polynomial representations of Oi,'

The motivation for this work comes from the study of material symmetry, where
transformations as in eqn (l) play an important role in the precise characterization of
material behavior. It is expected that closed-form expressions for Ok will facilitate the
analytical and computational investigation of anisotropic continua. As a representative
application, the systematic construction of structural (or anisotropic) tensors will be
discussed. The structural tensors arc k-th order tensors which remain invariant under
transformation of the type (I). These tensors play an important role in the formulation of
anisotropic response functions. Indeed, it has been shown in Boehler (1979) and Liu (1982)
that every anisotropic function can be derived from isotropic functions with the inclusions
of appropriately defined structural tensors. Zheng and Spender (1993a) have recently noted
that the structural tensors can be represented as linear combinations of the eigenvectors of
I[Jik corresponding to unit eigenvalues, thus opening a mathematically transparent way of
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constructing structural tensors. This problem is revisited in light of the new representations.
The proposed exponential representation of (h is also important in the study of isotropic
tensor functions. In particular, it is shown that the exponential representation, in con
junction with certain geometric techniques, provides a novel and general framework for
interpreting such functions. The detailed procedure is further illustrated by an example
concerning the corotational rates of isotropic tensor functions.

The organization of this article is as follows: relevant properties of the Kronecker
products are summarized in Section 2. A general exponential representation of (h is derived
in Section 3, while a polynomial counterpart is obtained in Section 4. The article is concluded
with two applications to material symmetry presented in Section 5.

2. PROPERTIES OF KRONECKER PRODCCTS

Let En and E" be m- and n-dimensional Euclidean vector spaces, and consider two
tensors A: E"f-+ En and B: Enf-+ En. The Kronecker product A 181 B of A and B is defined
as a linear transformation on the product space E" x E', such that

A 181 B(a ® b) = (Aa) ® (Bb), (2)

for any vectors a E Em and bEEn. The remainder of this section contains a brief review of
certain properties of Kronecker products. For an original account, see, e.g., the classical
monograph of Murnaghan (1938).

The transpose of the Kronecker product between A and B is defined such that

(a ® b)' [(A 181 B)(e ® d)] = [(A 181 B)1'(a ® b)]' (e ® d), (3)

for all vectors a, e in En and b, din P. In the above equation, "." denotes the usual inner
product between vectors. The following properties can be verified directly using (2) and
(3) :

A 1810 = OI8lB = aD,

(A+C)I8IB = AI8IB+CI8IB,

(CIA) ~ (fm) = cl.f3(A 181 B).

(A 181 B)(C 181 D) = (AC) 181 (BD),

(A I8JB)1 = Ar~ Br. (4)

for any tensors A, C on E"', for any tensors B, D on En, and for any real numbers :x and fl.
In (4a), 0 denotes the zero tensor on En or E', and aD the zero tensor on En X P. If the
tensors A and B are non-singular. then the inverse of the Kronecker product A 181 B is
defined as

(A 181 Br I = A 1 181 0- 1

so that from (5)

(A 181 B) - I(A 181 B) = (A 181 B)(A 181 B) I = 1m 181 I",

where I", and In are the identity tensors on En and E', respectively.

(5)
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Any three tensors A, Band E on En, E' and £I', respectively, satisfy the associativity
property

(6)

Taking into account (6), the k-th order Kronecker power of a tensor A is simply written as

AI' = A ~ A ~'" ~A.
, '-~

!,"lenn",

(7)

Letting 12 == 1 be the second-order identity tensor on E3
, it can be immediately verified using

(2) and (7) that Db defined as

Ok = I ~ I ~ ... ~ I"
L._--y-~

k.lcrms

is the identity tensor of order 2k. With reference to (4e), it is noted here that the Kronecker
power (DI( of a second-order orthogonal tensor Q is itself an orthogonal tensor in the sense
that

klenns k terms

= (QTQ)ZI(QTQ)~"'~(Q1Q) = Ok'
\ ' y~----_!

k.lenns

In order to explore the spectral properties of Kronecker products, consider a real
polynomial K(x, y) = L;~o L~~o !y'pq_,,:!'yq of order In in x and n in y, where'Xpq are given scalar
coefficients, and let the associated Kronecker product iK be defined as

117 I.'

iK(A, B) = L L !Y.pqAP ~ Bq.
fl "', I) fI'''' (]

(8)

In the above equation, it is understood that AO and BO correspond to 1m and I", respectively.
Denoting the eigenvalues and eigenvectors of A and B by {(I.;, u,), i = I, ... , In} and
{{ft

l
, vi),j = I, ... , n}, respectively, it can be verified that the eigenvalues of iK(A. B) are

[K().j, pJ i = I•...• lIl.j = 1•...• ni

and the associated eigenvectors are

(uj®v;.i= 1, .... II1,j= I, ... ,n}.

(9)

(10)

The above structure of spectral properties can be readily extended to higher-order
Kronecker products.

Two additional definitions are recorded below by way of background. First. the
Kronecker product A ~ B is termed diagonalizable, if there exists a similarity transformation
which renders it equal to A' t>S: B', where the components of A' and B' form a diagonal
matrix with reference to a given orthonormal basis. With the aid of (4) and (5) it can be
established that A ~ B is diagonalizable if and only if both A and Bare diagonalizable.
Further. the Kronecker products (A ~ B) and (C ~ D) are commuting if
(A ~ B)(C ~ D) = (C ~ D)(A ~ B). It is clear from (4d) that A [5<J Band C ~ D commute if A
and B commute with C and D. respectively.
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3. EXPONENTIAL REPRESENTATION OF KRONECKER POWERS OF ORTHOGONAL
TENSORS

An exponential representation of Kronecker powers of orthogonal tensors is derived
here, based on the mathematical properties of Kronecker products outlined in the preceding
section, as well as on standard parametrizations of orthogonal second-order tensors. To
this end, consider a proper orthogonal second-order tensor Q in E3 and recall that it admits
the exponential representation

Q = exp(OP). (II)

A simple derivation of (II) is contained in the Appendix. In the above representation, Pis
the skew-symmetric second-order tensor whose axial vector p satisfies Qp = p, namely p is
an eigenvector of Q associated with unit eigenvalue. In addition, 0E [0, 2n) is the rotation
angle of Q, such that cos 0± i sin 0 are the two complex conjugate eigenvalues of Q, and
. r--:

11=";- .
One of the main results in this article is a general exponential representation of the

Kronecker power lh in the form

(12)

where exp (OklP') is formally defined as

and

klP' = P ~ I ~ I ~ ... ~ I + I ~ P ~ I ~ ... ~ 1+· .. + I ~ I ~ ... ~ I ~ P.
\ I

Y
kterms

y
kterms

(13)

(14)

The representation of th in (12)-(14) has been obtained for the special case k = 2 in
Mehrabadi et al. (1995) by exploiting the particular structure of fourth-order tensors. To
prove (12)-(14) for all integers k, first note that

where, for any given i = I, ... , k,

lP'UI = I ~ ... ~ I ~ (OP) ~ I ... ~ I.
\~_--'Y J

iterrns
v

ktcrms

Using the properties of the Kronecker product in (4) and the definition in (11), it is
concluded that
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It is observed from (15) that the exponential of [P\i) is essentially reduced to a Kronecker
product form involving the exponential of GP. Since the Kronecker products IPU)'
i = 1,2, ... , k, obviously commute with each other, it follows that the exponential of their
sum equals the product of their exponentials. Therefore, with the aid of (4) and (15), it is
seen that

= (Q i8I I i8I i8I 1)(1 i8I Q i8I ... [><;1) ... (I i8I I i8I ... i8I Q)

= Q i8I Q [><; 0 Q = 0"

which completes the proof.
As background to ensuing developments, it is noted independently of the above

exponential representation that, upon applying the product rule of differentiation and
recalling eqn (A.7),

dOkdff = (PQ) i8I Q i8I ... CiS Q +Q i8I CPQ) i8I ... i8I Q +... +Q i8I Q i8I ... i8I (PQ) = klPOkl

(16)

provided that P does not explicitly depend on O.
Certain properties of the Kronecker product kIP merit further attention: first, from

(4e) and (14), it is observed that kIP is skew-symmetric, in the sense that kIP + klPT = @. This,
in turn, implies that kIP is normal, i.e. it commutes with its transpose, which guarantees that
kIP is also diagonalizable, see Horn and Johnson (1985), Section 2.5, for a proof. Also,
computationally convenient recursive formulae for kIP can be established using math
ematical induction. In particular, starting with lIP = P,

The above analysis can be readily extended to improper second-order orthogonal
tensors and their Kronecker products. Indeed, if Q is improper, then Q = - Q is proper
and admits the representation (12). It follows from (4) and (7) that

Q/. = ( -- l)k exp ((hIP),

where 0 and kIP are defined with reference to the proper orthogonal tensor Q.

4. A GENERALIZED ELLER RODRIGUES FORMULA

The classical Euler-Rodrigues representation of a proper orthogonal tensor in the
form

Q 1+ (I -- cos O)P2 + sin OP

can be derived by a series expansion of exp (OP), as shown in the Appendix. The fact that
the expansion of Q contains only three terms can be viewed as a direct consequence of a
profound result in linear algebra referred to as Sylvester's interpolation formula, see Horn
and Johnson (1991), p. 437. To introduce this result, consider a scalar analytic function!
of a real variable .x and let .l(A) be its associated tensor function, formally defined by a
polynomial series expansion, as in Mirsky (1990), Section 11.2.2. Further, assume that A is
a diagonalizable tensor with eigenvalues VI, ;'2" .. , i,} having multiplicities 05 1, .1'2" .. , S"

where s,;~ I for all i = 1,2, ... , r. Then, Sylvester's formula stipulates that
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f(A) = peA), (17)

where PCx) is the unique polynomial of degree r-I, which matches/ex) at the r distinct
eigenvalues of A. Thus, P(x) is written as

I'

P(x) = I L,(x)f(A),
i= 1

where L,{x), i = 1,2, ... , r, are the Lagrangian polynomials of degree r- I, defined as

(18)

(19)

Sylvester's formula provides the necessary mathematical framework for deriving a
general polynomial representation of exp ((~klP'). To this end, start by observing that P
possesses eigenvalues {,I'l' ..1.2, I.)} = fO, - i, i}, as shown in the Appendix. Therefore, taking
into account the definition of kIP' in (14), in conjunction with the spectral properties of
Kronecker products described in (8)-(10), it follows that the eigenvalues of kIP' belong to
the set Ak specified as

Clearly, the above set contains only 2k + I distinct eigenvalues and can be rewritten as

Ak = {- ki, - (k - I )i, ... , - i, 0, i, ... , (k - I )i, ki}.

(20)

(21 )

Corresponding to each of these distinct eigenvalues, the analytic function f(x) = exp (8x)
assumes values

{cosk8- isin k8, cos (k -1)0- isin (k -I )8, ... , cos 8- isin 0, I,

cos 8 + i sin 8, ... , cos (k -I)e + i sin (k -1)8, cos kO+ i sin k{;l}. (22)

It follows from (18), (19) and (21) that the k-th interpolating polynomial P2k(X) is of degree
2k. With the aid of (22), the first three members in the hierarchy of these interpolating
polynomials are shown to be

and

P4 ({;I, x) = I +~ (8 sin 0 - sin 20)x+ f2 (15 16 cos O+cos 20)x2

+ ~ (2 sin 0 - sin 20)x) +.~ (3 - 4 cos () + cos 28)x"

P 6(0,x) = I + JiJ(45 sin ()-9sin20+sin30)x

+ I~O (245 - 270 cos 0 + 27 cos 20 - 2 cos 38)x2

+~ (13 sin {;I - 8 sin 20+ sin 3())x3

+ 7
1
2 (28 39 cos 0+ 12 cos 20-cos 30)x4

+ Go(5 sin 0-4 sin 20+ sin 30)x5

+~,o (10 - J5 cos 0+ 6 cos 20 -cos 38):,,-6.

(23)

(24)

(25)
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Since it has been previously established that kIP is diagonalizable, Sylvester's formula is
applicable and according to (17) yields

(26)

Equations (23) and (26) recover the classical Euler-Rodrigues formula, while eqns (24) and
(26) result in the representation of O 2 obtained by a different method in Podio-Guidugli
and Virga (1987).

A polynomial representation of the Kronecker powers of improper orthogonal tensors
Q can be determined as a function of the rotation angle () and the skew-symmetric tensor
P ofQ = -Q to be

as argued in the previous section.

5. APPLICATIONS TO MATERIAL SYMMETRY

5.1. Structural tensors
Consider an anisotropic material with symmetry group /1'. A k-th order tensor ~ is

called a structural tensor for this material if

see, e.g., the article of Zheng and Spencer (l993a) and references therein for further
background information. The above identification implies that the structural tensors are
eigenvectors of the Kronecker powers of Q E /-ji associated with unit eigenvalues. In light
of the general polynomial representation of Ok in (26) it is concluded that kIP and exp «()klP)
commute. therefore possess the same eigenvectors. Hence

I)P~ = 0,

which, in turn, implies that the structural tensors of the anisotropic material span the null
space of kIP, i.e., they are the null eigenvectors of kIP. Appealing, again, to the spectral
properties of the Kronecker product described in (8}--(10) and recalling (20), it is concluded
that the structural tensors are of the general form

(27)

where q" i = 1,2,3 are the eigenvectors of P corresponding to the condition

(28)

The eigenvalues and eigenvectors of P are obtained in the Appendix. Clearly, the complex
conjugate eigenvalues of P must appear in pairs for (28) to hold. Assuming that k -2r zero
eigenvalues enter (28) together with r pairs of complex conjugate eigenvalues, it can be
readily verified that the total number N of distinct tensor products in the form (27), subject
to condition (28), is

IV =
.\

'\' C.2 'C'L k /~n

r",,,,O

I
s = 2(k-mod(k,2)),

each yielding a differen! null eigenvector of kIP. In the above equation, Ck' =
[k!j(m!(k-m)!)] denotes the binomial coefficient and mod (k, m) the remainder of the integer
division kim.



3942 J. Lu and P. Papadopoulos

The null eigenvectors of kP are mutually orthogonal, as are the eigenvectors
qi' i = 1,2,3, of P. Referring to the Appendix, write the eigenvectors of P as ql = p,
qz = q - ir and q.J = q - ir. Since qz and q3 are complex conjugate, the null eigenvectors of
kP can be always expressed as real vectors by taking suitable linear combinations and
eliminating the imaginary parts.

Using the procedure outlined above, the real null eigenvectors of kP for k = 1,2 and
3 are found to be

k = I: p;

k = 2 : p @ p, q @ q + r @ r, q @ r - r @ q ;

k 3: p@p@p.

p@(q@q+r@r). q@p@q+r@p@r, (q@q+r@r)@p,

p@(q@r-r@q). q@p@r-r@p@q, (q@r-r@q)@p.

The preceding derivation is analogous to that in Zheng and Spencer (1993) and the results
are in full agreement. It should be noted here that in the case of transversely isotropic
materials for which the preferred direction is along p, the proposed method generates the
full set of associated k-th order structural tensors.

5.2. Corotational rates oj'isotropie tensor/litletions
The corotational rate t of a k-th order tensor T is an objective tensor defined as the

time rate of change of T measured with reference to a coordinate frame rotating with time
dependent angular velocity w wp, where II) > O. The above definition implies that t is
expressed in component form as

where t'l i ", are the components of the material time derivative t of T and W is the skew
symmetric tensor associated with w. With the aid of (14), the tensor t is expressed in terms
of ;WW = UhP as

(29)

The corotational rate in (29) can be interpreted as the Lie derivative ofT with respect to k W,
see Marsden and Hughes (1983), Section 1.6. Indeed, given k W at time t, and suppressing for
brevity the explicit reference to the dependence on t, the flow of k W at time r is defined as

(30)

since, with the aid of (16),

Then, the pull-back l[J)~r)T(t) ofT with respect to I[J)k(r) is given by

l[J)~t)T(t) = Q l(t)T(r) = I[J)T(r)T(t),

where the orthogonality of Ok is invoked. Subsequently, the Lie derivative "Y\"T ofT with
respect to k W at time t is defined as
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(31 )

which, upon using (29), (16) and (30), reduces to t. In the special case where T is a spatial
second-order tensor and kW is identified with the vorticity tensor, it is immediately seen
that t coincides with the Jaumann rate of T.

Let l' be a k-th order isotropic tensor function of tensors AI. A2, ••• ,Ar of order
k t , k 2, ••• ,kf, respectively, such that

By the assumption of isotropy,

(32)

for all the Kronecker powers in (32) generated by an orthogonal second-order tensor Q. It
is known that the chain rule applies to the corotational rate of isotropic tensor functions,
see Dafalias (1985) and Zheng (1994). In view of (31) and (32), it follows that

01'. aT aT
=----A + ~--A +... + AcAl I aA

2
2 iJA

r
{,

which directly verifies the validity of the above rule.
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APPENDIX REPRESENTATIONS OF THE ROTATION TENSOR

Define p as an eigenvector of Q associated with unit eigenvalue, and let the skew-symmetric tensor P satisfy

pz p x z.

for any vector z in E'. It can be easily shown from the above that

P' = p ® p-I. pi = .- P,

and. upon using mathematical induction. that

p 2
• '=( IJ" Ip. P'''=(·_I),'''p l

. n= 1.2,.

(AI)

(A2)

(A3)

Also, define unit vectors q and r = p x q on a plane normal to p. Taking into account (A I) and (A2) and the
definition of {p,q,r}, it is observed that

P c= r ® q - q ® r. p 1 = . q ® q r ® r. (A4)

The first of the two equations in (A4) can be employed to establish that the eigenvalues of Pare {O.- i. i} and the
associated eigenvectors are {p, q + ir. q - ir:.

The rotation tensor Q can be expresscd by means of the classical Rodrigues formula as

Q = p ® p+cosO(q ® q +r ® f)-sin (I(q ® r-r ® q). (AS)

Conscqucntly. a simple proof of (II) is obtaincd by writing cxp(OP) in series form and taking into account (A3)
to get

'., 0" '0'" I • 0'"
exp (OP) = 2..-; P" = 1+ 2.: 1 P'" I 4- " ~- P"

" ,,/I , I (dl- I)' /"', (2n)!

= 1+ 2.: (
I' I

0'" I, (!l.
I Y' I P + 2.: (- I Y' . I -'-'- P"

(2n- 1)-' ", (2n)'

=' I + sin OP + (1- cos OW'. (A6)

The equivalence of the right-hand sidcs in (AS) and (A6) becomes obvious upon recalling (A2) and (A4). In
addition, eqns (A3) and (A5) imply that

dQ
dO C.c cosOP+sinOP' = PQ.

provided that p does not evplicitly depcnd on II.

(A7)


